Abstract
Glycans play important roles in the activity and function of monoclonal antibodies (mAbs). In this study, an isotope labeling method for the relative quantitative analysis of glycans in cetuximab, a chimeric human/mouse IgG1 monoclonal antibody that specifically targets epidermal growth factor receptor, via hydrophilic interaction LC-ultra-high-performance LC-HRMS was established based on Pronase E digestion. To this aim, novel isotope MS probes, i.e., 3-benzoyl-2-oxothiazolidine-4-carboxylic acid (d0-BOTC) and 3-(2,3,4,5,6-pentadeuterio-benzoyl)-2-oxothiazolidine-4-carboxylate acid (d5-BOTC), which include a carboxyl group to target the amino functional group in glycosylamine, were developed. The nonspecific Pronase E enzyme could simultaneously digest the peptide bound to the N- and O-glycans into glycosylamine having only one amino acid. Since the mass difference between the light- and heavy-labeled glycans was 5.0 Da, the relative abundance of their MS peaks was used to achieve the qualitative and relative quantitative analysis of glycans. Sialylglycopeptide was used as a complex glycan model to validate the accuracy of the method. The results demonstrated the good linearity (R2 ≥ 0.9994) between the experimentally detected MS intensity ratios and the theoretical molar ratios of the d0-BOTC to the corresponding d5-BOTC derivatives in the dynamic range of 0.03-10 and 0.03-20 of three orders magnitude for the d5-BOTC/d0-BOTC ratios. The reproducibility was between 0.16% and 10.70%, and the limit of detection was 13 fmol. The feasibility of the relative quantification method was investigated by analyzing the glycan content in cetuximab, finding good consistency between experimental and theoretical molar ratios (5:1, 3:1, 1:1, 1:3, 1:5) of d0/d5-BOTC-labeled glycans. Finally, 13 glycans were successfully identified in cetuximab by applying this method using an in-house Tracefinder database. This study provides a novel strategy for the high throughput analysis, identification, and functional study of glycans in mAbs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.