Abstract
We introduce a notion of relative primeness for equivalence relations, strengthening the notion of non-reducibility, and show for many standard benchmark equivalence relations that non-reducibility may be strengthened to relative primeness. We introduce several analogues of cardinal properties for Borel equivalence relations, including the notion of a prime equivalence relation and Borel partition properties on quotient spaces. In particular, we introduce a notion of Borel weak compactness, and characterize partition properties for the equivalence relations ${\mathbb F}_2$ and ${\mathbb E}_1$. We also discuss dichotomies related to primeness, and see that many natural questions related to Borel reducibility of equivalence relations may be viewed in the framework of relative primeness and Borel partition properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.