Abstract

The research presented in this paper approaches the issue of robot team navigation using relative positioning. With this approach each robot is equipped with sensors that allow it to independently estimate the relative direction of an assigned leader. Acoustic sensor systems are used and were seen to work very effectively in environments where datum relative positioning systems (such as GPS or acoustic transponders) are typically ineffective. While acoustic sensors provide distinct advantages, the variability of the acoustic environment presents significant control challenges. To address this challenge, directional control of the robot was accomplished with a feed forward neural network trained using a genetic algorithm, and a new approach to training using recent memories was successfully implemented. The design of this controller is presented and its performance is compared with more traditional classic logic and behavior controllers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.