Abstract

Relative permeabilities were measured at very low interfacial tensions (IFT) for two-phase mixtures of methanol and hexane flowing through Clashach sandstone. These two components pass from a two- to a single-phase system as the temperature is increased above the critical solution temperature (CST). The interfacial tension between the coexisting phases approaches zero as the solution reaches miscibility. The phase behaviour of methanol and hexane mixtures has been well characterised allowing the calculation of relative permeabilities, saturations and capillary numbers. Flow data are reported for four different temperatures in the two-phase region (i.e., four values of IFT and capillary number). The capillary desaturation curve (CDC) for the strongly wetting methanol rich phase is also presented. In addition to the novel technique presented for measurement of relative permeability, the results indicate that relative permeabilities approach straight line functions very near the critical point. Furthermore, desaturation of the wetting phase was found to be dependent on the capillary number which, in turn, depends on the location of the mixture on the fluid phase diagram and the proximity to the critical temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.