Abstract

SUMMARYDeficiencies of micro (Zn, B) and secondary (S) nutrients are well-documented in soil as well as in cereal crops, leading to decreased crop yields and low nutritional quality of food. We evaluated the effects of coated urea on maize yield, N and Zn uptake, and input cost relationships. Field experiments were conducted on maize to test boron-coated (BCU), sulphur-coated (SCU) and zinc-coated urea (ZnCU) during 2013 and 2014. On the basis of 2 years’ average data, the highest grain yield was achieved with 0.5% BCU, 5% SCU and 2.5% ZnCU as zinc sulphate hepta hydrate. These treatments increased yields by 5.4, 12.8 and 9.9% over prilled urea (PU), respectively. Application of 0.5% BCU (supplying 1.4 kg B ha−1), 5% SCU (supplying 14.1 kg S ha−1) and 2.5% ZnCU (supplying 7.05 kg Zn ha−1) registered the highest N concentrations and uptake in grain and stover. Total N uptake (grain + stover) was increased by 7.6, 16.7 and 17.1% with BCU, SCU and ZnCU treatments over PU. As compared to PU, Zn concentration in maize grain was significantly higher and total Zn uptake (grain + stover) increased by 32.4% with 2.5% ZnCU. Coated urea materials also enhanced the partial factor productivity (PFPN), agronomic efficiency (AEN), recovery efficiency (REN) and harvest index (HIN) over those of PU. From the economic viewpoint this study suggests that coating of urea with 0.3% boron, 5% sulphur or 2% zinc gives maximum net returns and benefit-cost ratio. Our data indicate that coating of B, Zn and S onto urea increases maize yield, profitability and nitrogen use efficiency in the western Indo-Gangetic plains of India.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call