Abstract

Multi-modal learning has gained significant attention due to its ability to enhance machine learning algorithms. However, it brings challenges related to modality heterogeneity and domain shift. In this work, we address these challenges by proposing a new approach called Relative Norm Alignment (RNA) loss. RNA loss exploits the observation that variations in marginal distributions between modalities manifest as discrepancies in their mean feature norms, and rebalances feature norms across domains, modalities, and classes. This rebalancing improves the accuracy of models on test data from unseen (“target”) distributions. In the context of Unsupervised Domain Adaptation (UDA), we use unlabeled target data to enhance feature transferability. We achieve this by combining RNA loss with an adversarial domain loss and an Information Maximization term that regularizes predictions on target data. We present a comprehensive analysis and ablation of our method for both Domain Generalization and UDA settings, testing our approach on different modalities for tasks such as first and third person action recognition, object recognition, and fatigue detection. Experimental results show that our approach achieves competitive or state-of-the-art performance on the proposed benchmarks, showing the versatility and effectiveness of our method in a wide range of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.