Abstract

A relative navigation method for autonomous formation flying using the state-dependent Riccati equation filter (SDREF) is presented. In the SDREF, nonlinear relative dynamics, including J2 perturbation, are parameterized into a state-dependent coefficient (SDC) form without any loss of nonlinearity. The relative navigation algorithm is established based on the carrier-phase differential GPS (CDGPS) and single-frequency GPS data, in which the SDREF is used as a nonlinear estimator. To evaluate the SDREF performance, two different extended Kalman filters (EKFR1 and EKFR2) are introduced. The dynamic models of all the filters are based on relative motion including J2 perturbation. However, the SDREF and the EKFR1 use linear state propagation, whereas EKFR2 employs nonlinear state propagation. The navigation simulation is performed for each filter using live GPS signals simulated by a GPS signal generator, and the result is analyzed in terms of estimation accuracy and computational load. As a result, the SDREF provides a relative navigation solution with 3-D RMS accuracies of 6.0mm and 0.153mm/s for position and velocity, respectively, for a separation of 50km with a computation time of approximately 34s. The simulation results demonstrate that the SDREF estimates the relative states as rapidly as the EKFR1 and as accurately as the EKFR2, which means that the developed SDREF combines the strong points of EKFR1 and EKFR2 and overcomes their disadvantages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call