Abstract

The moduli space of stable relative maps to the projective line combines features of stable maps and admissible covers. We prove all standard Gromov-Witten classes on these moduli spaces of stable relative maps have tautological push-forwards to the moduli space of curves. In particular, the fundamental classes of all moduli spaces of admissible covers push-forward to tautological classes. Consequences for the tautological rings of the moduli spaces of curves include methods for generating new relations, uniform derivations of the socle and vanishing statements of the Gorenstein conjectures for the complete, compact type, and rational tail cases, tautological boundary terms for Ionel's, Looijenga's, and Getzler's vanishings, and applications to Gromov-Witten theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.