Abstract
We consider on-line density estimation with a parameterized density from the exponential family. The on-line algorithm receives one example at a time and maintains a parameter that is essentially an average of the past examples. After receiving an example the algorithm incurs a loss, which is the negative log-likelihood of the example with respect to the current parameter of the algorithm. An off-line algorithm can choose the best parameter based on all the examples. We prove bounds on the additional total loss of the on-line algorithm over the total loss of the best off-line parameter. These relative loss bounds hold for an arbitrary sequence of examples. The goal is to design algorithms with the best possible relative loss bounds. We use a Bregman divergence to derive and analyze each algorithm. These divergences are relative entropies between two exponential distributions. We also use our methods to prove relative loss bounds for linear regression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.