Abstract

In this work, we theoretically investigate the relative intensity noise (RIN) properties of quantum dot (QD) lasers through a rate equation model including the Langevin noises and the contribution from the off resonance energy levels. It is shown that the carrier noise significantly enhances the RIN which can be further reduced by properly controlling the energy separation between the first excited and the ground states. In addition, simulations also unveil that the RIN of QD lasers is rather temperature independent which is of prime importance for the development of power efficient light sources. Overall, these results indicate that QD lasers are excellent candidates for the realization of ultra-low noise oscillators hence being advantageous for fiber optics communication networks, short reach optical interconnects and integrated photonics systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call