Abstract

We theoretically investigate the relative intensity noise (RIN) of a silicon hybrid laser by taking into account two-dimension transverse modes in the hybrid waveguide. It shows that, when only one transverse mode is excited, RIN spectrum of the hybrid laser exhibits a larger peak value at a lower relaxation oscillation (RO) frequency as compared with the case of a conventional multiple-quantum well (MQW) laser with the the same active region design and dimension. In contrast, when two transverse modes are excited, the hybrid laser shows a lower peak value at a higher RO frequency as compared with the MQW laser. The effects of waveguide dimensions, e.g., Si ridge height and IIII-V ridge width on RIN spectra of the hybrid laser are also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.