Abstract
Molinate is a thiocarbamate herbicide used as a pre-emergent in rice patty fields. It has two predominant sulfoxidation metabolites, molinate sulfoxide and molinate sulfone. Previous work demonstrated an in vivo decrease in liver aldehyde dehydrogenase (ALDH) activity in rats treated with molinate and motor function deficits in dogs dosed chronically with this compound. ALDH is an enzyme important in the catabolism of many neurotransmitters, such as dopamine. Inhibition of this enzyme may lead to the accumulation of endogenous neurotoxic metabolites such as 3,4-dihydroxyphenylacetaldehyde, a dopamine metabolite, which may account for the observed neurotoxicity. In this study, the relative reactivity of molinate and both of its sulfoxidation metabolites toward ALDH was investigated, as well as the mechanism of inhibition. The ALDH activity was monitored in two different model systems, human recombinant ALDH (hALDH2) and mouse striatal synaptosomes. Molinate sulfone was found to be the most potent ALDH inhibitor, as compared to molinate and molinate sulfoxide. The reactivity of these three compounds was also assessed, using N-acetyl Cys, model peptides, and hALDH2. It was determined that molinate sulfone is capable of covalently modifying Cys residues, including catalytic Cys302 of ALDH, accounting for the observed enzyme inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.