Abstract

Streams are important sites of elemental transformations due to the relatively high contact rates between flowing water and biogeochemically reactive sediments. Increased urbanization typically results in higher nutrient and carbon (C) inputs to streams from their watersheds and increased flow rates due to modification in channel form, reducing within stream net retention and increasing downstream exports. However, less is known on how moderate urbanization might influence the joint processing of C, nitrogen (N), and phosphorus (P) in streams or the relative influence of changes in watershed and stream features on their fluxes. In this study, we performed mass-balances of different C, N, and P species in multiple reaches with contrasting land use land cover and geomorphic features (pools, riffles, runs) to determine the effects of geomorphology versus human influence on elemental fluxes in a pristine and a semi-urban stream. N was the most responsive of all elements, where nitrate concentrations were 3.5-fold higher in the peri-urban stream. Dissolved organic carbon was only slightly higher in the peri-urban site whereas total P not significantly different between streams. In terms of fluxes, nitrate behaved differently between the streams with net retention occurring in the majority of the reaches of the pristine site, whereas net export was observed in all of the reaches of the semi-urban one. We found a decrease in nitrate concentrations with an increase in excess deuterium of the water (d-excess), an indicator of how overall water retention capacity of the watershed favored N loss. Within the stream, the presence of pools, and reduced channel slope, which also increase water retention time, again favored N loss. Overall, nitrate was the most sensitive nutrient to slight urbanization, where higher export to stream was influenced by land use, but where geomorphic features were more important in driving retention capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.