Abstract

We prove an analogue for even dimensional manifolds of the Atiyah–Patodi–Singer twisted index theorem for trivialized flat bundles. We show that the eta invariant appearing in this result coincides with the eta invariant by Dai and Zhang up to an integer. We also obtain the odd dimensional counterpart for manifolds with boundary of the relative index pairing by Lesch, Moscovici and Pflaum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.