Abstract

Abstract. Dust particles, serving as ice-nucleating particles (INPs), may impact the Arctic surface energy budget and regional climate by modulating the mixed-phase cloud properties and lifetime. In addition to long-range transport from low-latitude deserts, dust particles in the Arctic can originate from local sources. However, the importance of high-latitude dust (HLD) as a source of Arctic INPs (compared to low-latitude dust, LLD) and its effects on Arctic mixed-phase clouds are overlooked. In this study, we evaluate the contribution to Arctic dust loading and INP population from HLD and six LLD source regions by implementing a source-tagging technique for dust aerosols in version 1 of the US Department of Energy's Energy Exascale Earth System Model (E3SMv1). Our results show that HLD is responsible for 30.7 % of the total dust burden in the Arctic, whereas LLD from Asia and North Africa contributes 44.2 % and 24.2 %, respectively. Due to its limited vertical transport as a result of stable boundary layers, HLD contributes more in the lower troposphere, especially in boreal summer and autumn when the HLD emissions are stronger. LLD from North Africa and East Asia dominates the dust loading in the upper troposphere with peak contributions in boreal spring and winter. The modeled INP concentrations show better agreement with both ground and aircraft INP measurements in the Arctic when including HLD INPs. The HLD INPs are found to induce a net cooling effect (−0.24 W m−2 above 60∘ N) on the Arctic surface downwelling radiative flux by changing the cloud phase of the Arctic mixed-phase clouds. The magnitude of this cooling is larger than that induced by North African and East Asian dust (0.08 and −0.06 W m−2, respectively), mainly due to different seasonalities of HLD and LLD. Uncertainties of this study are discussed, which highlights the importance of further constraining the HLD emissions.

Highlights

  • The Arctic has experienced long-term climate changes, including rapid warming and shrinking sea ice extent

  • We investigate the source attribution of dust aerosols in the Arctic and quantify the relative importance of Arctic local dust versus long-range-transported low-latitude dust (LLD) in the Arctic dust loading and ice-nucleating particles (INPs) population

  • We found that high-latitude dust (HLD) is responsible for 30.7 % of the total dust burden in the Arctic, whereas LLD from Asia and North Africa contributes 44.2 % and 24.2 %, respectively

Read more

Summary

Introduction

The Arctic has experienced long-term climate changes, including rapid warming and shrinking sea ice extent. Arctic mixed-phase clouds (AMPCs), which occur frequently throughout the year, strongly impact the surface and atmospheric energy budget and are one of the main components driving the Arctic climate (Morrison et al, 2012; Shupe and Intrieri, 2004; Tan and Storelvmo, 2019). Large ice crystals with higher fall speeds than liquid droplets can readily initiate precipitation and further deplete cloud liquid through the riming process. All these processes can interact with each other nonlinearly and impact the phase partitioning of mixed-phase clouds (Tan and Storelvmo, 2016)

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.