Abstract

The relative importance of dissolved and food pathways and the influence of food type in the bioaccumulation and retention of lead in the shrimp Palaemonetes varians were examined using a radiotracer method. Shrimp were exposed to 210Pb-labelled seawater or fed two types of 210Pb-labelled food, viz. mussels or worms. The amount of radiotracer accumulated by shrimp was examined over a 7-day period, followed by a 1-month and a 7-day depuration period for the dissolved and food source, respectively. Steady state in the uptake was reached after 2 days exposure to dissolved lead, with a resultant estimated concentration factor of 98 ± 3. Transfer factors following ingestion of contaminated mussels and worms were lower than unity for both food types, with lead transfer from worms being significantly higher than that from mussels. Accumulation of dissolved Pb by shrimp was found to occur mainly through adsorption on the exoskeleton with a minor accumulation in the internal tissues probably resulting from the intake of seawater for osmoregulation. In contrast, lead taken up from contaminated food was readily absorbed and bound in the internal tissues of P. varians. Although the transfer of lead to P. varians through the ingestion of contaminated food was low (TF < 1%), it still represented 4 to 8% of the lead content in the prey which is a significant additional contribution of lead to the shrimp body burden. Independent of food type, following ingestion of contaminated food, approximately 23–27% of total lead accumulated in shrimp was located in the edible parts (e.g. muscle). Therefore, the food pathway is suggested to be a significant contributor to the lead transfer to humans through ingestion of contaminated shrimp. After exposure to contaminated food, lead loss kinetics were described by a two-component model, whereas Pb loss following direct uptake from seawater was best described by a three-component model. The additional compartment representing 64% of total Pb retained and characterized by a turnover < 10 min, corresponded to lead weakly adsorbed on the exoskeleton and incorporated in the hepatopancreas. Nevertheless, a significant fraction of lead accumulated from the dissolved (2%) and food (52–57%) pathways remained irreversibly retained in the tissues, suggesting that this organism could also serve as an effective long-term bioindicator of lead contamination in marine waters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.