Abstract

Abstract.Individual kernel thickness and moisture content (MC) vary within rice panicles. These variations affect the drying characteristics of rice kernels and consequently, the milling yield. This study utilized an X-ray system augmented with an in-situ rice drying apparatus that enabled fissure detection in rough rice kernels during drying and tempering. Rough rice kernels of two long-grain cultivars (Roy J and CL XL745), each at two MC levels (20% and 16%, w.b.), were fractionated into three thickness fractions (thin <1.98 mm, medium 1.98 - 2.03 mm, and thick >2.03 mm). Kernels from each of the 12 sub-lots were dried and tempered under controlled air conditions. Fissured kernel percentages (FKP) were determined from X-ray images taken before, during, and after drying and tempering. Kernel thickness and MC both affected moisture desorption fissuring. Generally, as kernel thickness increased, the FKP increased for high-MC lots. In regards to MC, high-MC lots were more prone to fissuring than the low-MC lots. Overall, these findings highlight the role of kernel properties on fissuring during drying. Keywords: Kernel fissuring, Kernel thickness, Moisture content, Rice drying, X-ray imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.