Abstract

<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> The relative height of the seafloor can be estimated by using two vertically displaced receivers. In this paper, we propose techniques to improve the accuracy of the estimated height. Our results are based on the use of synthetic aperture sonar (SAS) imaging, which implies coherent addition of complex images acquired from a moving platform. The SAS processing improves the along-track (or azimuth) resolution, as well as the signal-to-noise ratio (SNR), which in turn improves the estimated height accuracy. We show that the shift of the <emphasis emphasistype="boldital">effective</emphasis> center frequency induced by coherent, frequency-dependent scattering affect the time-delay estimates from complex cross correlations, and we propose a correction technique for broadband signals with uneven magnitude spectra. To reduce the effect of geometrical decorrelation and increase the coherence between the images, we beamform the sonar images onto an <emphasis emphasistype="bold"><emphasis>a priori</emphasis></emphasis> estimate of the seafloor height before correlating. We develop a mathematical model for the imaging geometry. Finally, we demonstrate our proposed estimators by providing relative seafloor height estimates from real aperture and SAS images, obtained during the InSAS-2000 experiment at Elba Island in Italy. In particular, we demonstrate that the SAS image quality is significantly improved by inclusion of the height estimates as <emphasis emphasistype="bold"><emphasis>a priori</emphasis></emphasis> information. </para>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.