Abstract

Signomial programs (SPs) are optimization problems specified in terms of signomials, which are weighted sums of exponentials composed with linear functionals of a decision variable. SPs are nonconvex optimization problems in general, and families of NP-hard problems can be reduced to SPs. In this paper we describe a hierarchy of convex relaxations to obtain successively tighter lower bounds of the optimal value of SPs. This sequence of lower bounds is computed by solving increasingly larger-sized relative entropy optimization problems, which are convex programs specified in terms of linear and relative entropy functions. Our approach relies crucially on the observation that the relative entropy function, by virtue of its joint convexity with respect to both arguments, provides a convex parametrization of certain sets of globally nonnegative signomials with efficiently computable nonnegativity certificates via the arithmetic-geometric-mean inequality. By appealing to representation theorems from real algeb...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.