Abstract

We study the question of how reliably one can distinguish two quantum field theories (QFTs). Each QFT defines a probability distribution on the space of fields. The relative entropy provides a notion of proximity between these distributions and quantifies the number of measurements required to distinguish between them. In the case of nearby conformal field theories, this reduces to the Zamolodchikov metric on the space of couplings. Our formulation quantifies the information lost under renormalization group flow from the UV to the IR and leads us to a quantification of fine-tuning. This formalism also leads us to a criterion for distinguishability of low energy effective field theories generated by the string theory landscape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.