Abstract
Let η be a diffusion process taking values on the infinite dimensional space T Z , where T is the circle, and with components satisfying the equations dη i =σ i (η) dW i +b i (η) dt for some coefficients σ i and b i , i∈Z. Suppose we have an initial distribution μ and a sequence of times t n →∞ such that lim n →∞μS tn =ν exists, where S t is the semi-group of the process. We prove that if σ i and b i are bounded, of finite range, have uniformly bounded second order partial derivatives, and inf i ,ησ i (η)>0, then ν is invariant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.