Abstract

A pulsed nitrogen laser photodissociated F/sub 2/ in the presence of Xe, and the resulting ground-state XeF was excited by a second pulsed, tunable dye laser in the 0,4 and 0,5 bands of the B(1/2)-X(1/2) transition. Both dispersed fluorescence spectra and tunable laser excitation spectra, taken by using a gated detection system, show that the C state is lower in energy than the lowest vibrational level of the B state. The ratio of fluorescence intensities in the C-A and B-X transitions was measured as a function of xenon and argon pressure. An analytical model was developed for the time dependence of the B and C state concentrations after instantaneous excitation and in the presence of intersystem crossing, quenching, and radiative decay. Published rate constants for the excited state kinetics of XeF(B) and XeF(C) are reviewed, and model calculations of the measured intensity ratio are used to assess these rate constants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.