Abstract

Nickel (Ni) is a fundamental micronutrient in plants but hampers plant growth and metabolism at elevated levels in the soil by inducing oxidative stress. In the recent years, use of polyamines (PAs) and arbuscular mycorrhiza (AM) have gained importance for their roles in enabling plants to withstand Ni toxicity. However, information about their comparative effectiveness in alleviating Ni stress is scanty. Therefore, the current study was designed to evaluate relative impacts of three PAs (Put, Spd, and Spm) and AM (Rhizoglomus intraradices) in reducing Ni uptake, ROS generation, and modulating antioxidant defense machinery in two pigeonpea genotypes (Pusa 2001-tolerant and AL 201-sensitive). Roots of Ni supplied plants accumulated significantly more Ni than the leaves, more in AL 201 than Pusa 2001, which was proportionate to reduced dry weights and enhanced oxidative burst. Although all the three PAs as well as AM inoculations upsurge plant growth by remarkably lowering Ni transport as well as the sequential oxidative burden, AM was most effective, followed by Put, Spd with least positive impact of Spm. The combined applications of AM and Put were able to strengthen antioxidant defense mechanisms, including those of ascorbate-glutathione cycle, most strongly when compared with + Spd + AM and + Spm + AM. Pusa 2001 was more responsive to PAs priming because of its proficiency to develop better effective mycorrhizal symbiosis with R. intraradices when compared with AL201. Hence, the results suggest use of combined applications of PAs (mainly Put) and R. intraradices as an effective strategy for mitigating Ni toxicity in pigeonpea genotypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.