Abstract

The relative dispersion of fluid particle pairs in isotropic turbulence is studied using direct numerical simulation, in greater detail and covering a wider Reynolds number range than previously reported. A primary motivation is to provide an important resource for stochastic modelling incorporating information on Reynolds-number dependence. Detailed results are obtained for particle-pair initial separations from less than one Kolmogorov length scale to larger than one integral length scale, and for Taylor-scale Reynolds numbers from about 38 to 230. Attention is given to several sources of uncertainty, including sample size requirements, value of the one-particle Lagrangian Kolmogorov constant, and the temporal variability of space-averaged quantities in statistically stationary turbulence.Relative dispersion is analysed in terms of the evolution of the magnitude and angular orientation of the two-particle separation vector. Early-time statistics are consistent with the Eulerian spatial structure of the flow, whereas the large-time behaviour is consistent with particle pairs far apart moving independently. However, at intermediate times of order several Kolmogorov time scales, and especially for small initial separation and higher Reynolds numbers, both the separation distance and its rate of change (called the separation speed) are highly intermittent, with flatness factors much higher than those of Eulerian velocity differences in space. This strong intermittency is a consequence of relative dispersion being affected by a wide range of length scales in the turbulent flow as some particle pairs drift relatively far apart. Numerical evidence shows that substantial dispersion occurs in the plane orthogonal to the initial separation vector, which implies that the orientation of this vector has, especially for small initial separation, only limited importance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.