Abstract

This study focuses on the impact of relative density on the bearing capacity of unsaturated sand using both theoretical predictions and measurements from physical modeling tests. The theoretical predictions incorporate the effective stress, quantified using the suction stress concept and friction angles obtained from direct shear tests on unsaturated sand specimens at different relative densities and degrees of saturation, into conventional bearing capacity equations. The suction stress values inferred from the failure envelopes were found to match well with values predicted from the soil-water retention curves for sands with different relative densities. Moreover, the bearing capacity values measured in physical modeling experiments involving loading of a circular footing atop unsaturated silty sand layers having different initial degrees of saturation matched well with the predicted bearing capacity values from an effective-stress based model. As expected, the bearing capacity was greater for soils with increasing relative density, but an interesting observation is that a transition from general to local shear failure occurred at a certain combination of relative density and degree of saturation. For the silty sand tested, this transition occurred at a relative density of 0% for degrees of saturation between 4 and 16% and at a relative density of 40% for degrees of saturation between 30 and 90%. General shear failure was always observed at relative densities of 70 and 90%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.