Abstract

Velocity of ultrasound waves has proved to be a useful indicator of bone biomechanical competence. A detailed understanding of the dependence of ultrasound parameters such as velocity on bone characteristics is a key to the development of bone quantitative ultrasound (QUS). The objective of this study is to investigate the relative contributions of porosity and mineralized matrix properties to the bulk compressional wave velocity (BCV) along the long bone axis. Cross-sectional slabs from the diaphysis of four human femurs were included in the study. Seven regions of interest (ROIs) were selected in each slab. BCV was measured in through-transmission at 5MHz. Impedance of the mineralized matrix (Zm) and porosity (Por) were obtained from 50MHz scanning acoustic microscopy. Por and Zm had comparable effects on BCV along the bone axis (R=−0.57 and R=0.72, respectively).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.