Abstract
To assess the relative contributions of microbial groups (bacteria, protozoa, and fungi) in rumen fluids to the overall process of plant cell wall digestion in the rumen, representatives of these groups were selected by physical and chemical treatments of whole rumen fluid and used to construct an artificial rumen ecosystem. Physical treatments involved homogenization, centrifugation, filtration, and heat sterilization. Chemical treatments involved the addition of antibiotics and various chemicals to rumen fluid. To evaluate the potential activity and relative contribution to degradation of cell walls by specific microbial groups, the following fractions were prepared: a positive system (whole ruminal fluid), a bacterial (B) system, a protozoal (P) system, a fungal (F) system, and a negative system (cell-free rumen fluid). To assess the interactions between specific microbial fractions, mixed cultures (B+P, B+F, and P+F systems) were also assigned. Patterns of degradation due to the various treatments resulted in three distinct groups of data based on the degradation rate of cell wall material and on cell wall-degrading enzyme activities. The order of degradation was as follows: positive and F systems > B system > negative and P systems. Therefore, fungal activity was responsible for most of the cell wall degradation. Cell wall degradation by the anaerobic bacterial fraction was significantly less than by the fungal fraction, and the protozoal fraction failed to grow under the conditions used. In general, in the mixed culture systems the coculture systems demonstrated a decrease in cellulolysis compared with that of the monoculture systems. When one microbial fraction was associated with another microbial fraction, two types of results were obtained. The protozoal fraction inhibited cellulolysis of cell wall material by both the bacterial and the fungal fractions, while in the coculture between the bacterial fraction and the fungal fraction a synergistic interaction was detected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.