Abstract

In Sendai Bay, stone flounder larvae settle and spend their juvenile period in either shallow exposed inshore nursery grounds or estuarine nursery grounds. The purpose of this study is to examine the relative contributions of these two kinds of nursery grounds to the flounder population using otolith strontium:calcium ratios. Stone flounder juveniles were collected from both nursery grounds, and one‐ and two‐year‐old flounder were caught deeper in Sendai Bay. Sr and Ca content in the otoliths were measured by electron probe micro analysis. The Sr:Ca ratios in the otolith section corresponding to the early postsettlement period ranged from 3.06 to 3.85 for the exposed inshore areas with stable low temperature and high salinity conditions, and from 3.81 to 5.32 in brackish estuaries with high temperature and low salinity conditions but with large diel and tidal cyclical fluctuations. Values from an estuarine site with stable salinity ranged from 3.58 to 4.15 overlapping with both the above ranges. Rearing experiments supported our inference that the high otolith Sr:Ca ratios of juveniles inhabiting estuarine nursery grounds are attributable to higher temperature and physiological stress caused by the large diel temperature and salinity fluctuations within the estuaries. Estimation of the Sr:Ca ratio of recruited fish using the otolith section formed while in the nursery area showed that at least 20 out of 42 individuals examined originated from estuarine nursery grounds. The present study indicates that estuaries play an important role as nursery grounds for stone flounder, producing about half of the stock in spite of the small and restricted area compared with the wide expanse of the exposed inshore area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call