Abstract

Isolated ATP-sensitive K(+) (K(ATP)) channel inhibition with glibenclamide does not alter exercise-induced forearm metabolic vasodilation. Whether forearm metabolic vasodilation would be influenced by K(ATP) channel inhibition in the setting of impaired nitric oxide (NO)- and prostanoid-mediated vasodilation is unknown. Thirty-seven healthy subjects were recruited. Forearm blood flow (FBF) was assessed using venous occlusion plethysmography, and functional hyperemic blood flow (FHBF) was induced by isotonic wrist exercise. Infusion of N(G)-monomethyl-l-arginine (l-NMMA), aspirin, or the combination reduced resting FBF compared with vehicle (P < 0.05). Addition of glibenclamide to l-NMMA, aspirin, or the combination did not further reduce resting FBF. l-NMMA decreased peak FHBF by 26%, and volume was restored after 5 min (P < 0.05). Aspirin reduced peak FHBF by 13%, and volume repaid after 5 min (P < 0.05). Coinfusion of l-NMMA and aspirin reduced peak FHBF by 21% (P < 0.01), and volume was restored after 5 min (P < 0.05). Addition of glibenclamide to l-NMMA and aspirin did not further decrease FHBF. Vascular K(ATP) channel blockade with glibenclamide does not affect resting FBF or FHBF in the setting of NO and vasodilator prostanoid inhibition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.