Abstract

The dorsal raphe nucleus (DRN) is embedded in the ventral part of the caudal periaqueductal gray (PAG). Electrical or chemical activation of neurons throughout this region produces antinociception. The objective of this manuscript is to determine whether the ventrolateral PAG and DRN are distinct antinociceptive systems. This hypothesis was tested by determining the antinociceptive potency of microinjecting morphine into each structure (Experiment 1), creating a map of effective microinjection sites that produce antinociception (Experiment 2) and comparing the development of antinociceptive tolerance to repeated microinjections of morphine into the ventrolateral PAG and DRN (Experiment 3). Morphine was more potent following cumulative injections (1.0, 2.2, 4.6 & 10μg/0.2μL) into the ventrolateral PAG (D50 =3.3μg) compared to the lateral (4.3μg) or medial DRN (5.8μg). Antinociception occurred following 94% of the morphine injections into the ventrolateral PAG, whereas only 68.3% and 78.3% of the injections into the lateral and medial aspects of the DRN produced antinociception. Repeated microinjections of morphine into the ventrolateral PAG produced tolerance as indicated by a 528% difference in potency between morphine and saline pretreated rats. In contrast, relatively small changes in potency occurred following repeated microinjections of morphine into the lateral and medial aspects of the DRN (107% and 49%, respectively). These data indicate that the ventrolateral PAG and DRN are distinct antinociceptive structures. Antinociception is greater with injections into the ventrolateral PAG compared to the DRN, but this antinociception disappears rapidly because of the development of tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call