Abstract

N-glycan modification is reported to be important in regulating the structure and function of immunoglobulins in mammals. While, the study on teleost immunoglobulin glycosylation is still limitted. In this study, we constructed a TNP-antigen driven model, and detected the site-specific N-glycans of PBS-immunized and TNP-specific Oreochromis niloticus serum IgM through 18O-labeling and nanoLC-MS/MS. These methods are widely used for peptide enrichment and protein modification identification, but rarely used in detecting the level of N-glycosylation in teleost Igs that driven by specific antigen. The results revealed that there are four N-glycosylation sites in O.niloticus IgM heavy chain, namely, the Asn-315 site in the CH2 domain, the Asn-338 site in the CH3 domain, and the Asn-509 and Asn-551 sites in the CH4 domain, All of the four residues were efficiently N-glycosylated. After immunized with TNP-antigen, the signal strength of oligomannose in the TNP-specific IgM in primary mass spectrometry was significantly higher than that in the PBS-immunized IgM. Notably, the TNP-specific IgM had an Asn-509 site fully occupied with oligomannose, while only a small amount of oligomannose was found in the PBS-immunized IgM of this site. N-glycans in other sites were mainly complex-type with a low content of fucosylation and sialylated. The oligomannose in TNP-specific IgM was further verified to be essential for the binding of IgM and MBL. These results demonstrated that the TNP-antigen induced the site-specific oligomannose modification of O.niloticus IgM heavy chain, and played an important role in the interaction of IgM and MBL, which provided insights into the evolutionary understanding of the IgM oligomannose modification and function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call