Abstract

Relative complexity measures the complexity of a probability preserving transformation relative to a factor being a sequence of random variables whose exponential growth rate is the relative entropy of the extension. We prove distributional limit theorems for the relative complexity of certain zero entropy extensions: RWRSs whose associated random walks satisfy the $\alpha$-stable CLT ($1<\alpha\le2$). The results give invariants for relative isomorphism of these.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.