Abstract

Let X be a proper metric space, which has finite asymptotic dimension in the sense of Gromov (or more generally, straight finite decomposition complexity of Dranishnikov and Zarichnyi). New descriptions are provided of the Roe algebra of X: (i) it consists exactly of operators which essentially commute with diagonal operators coming from Higson functions (that is, functions on X whose oscillation tends to 0 at infinity) and (ii) it consists exactly of quasi-local operators, that is, ones which have finite epsilon propogation (in the sense of Roe) for every epsilon>0. These descriptions hold both for the usual Roe algebra and for the uniform Roe algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.