Abstract
Generalized thermodynamics or extended irreversible thermodynamics presumes the existence of thermodynamic intensive variables (e.g., temperature, pressure, chemical potentials, generalized potentials) even if the system is removed from equilibrium. It is necessary to properly understand the nature of such intensive variables and, in particular, of their fluctuations, that is, their deviations from those defined in the extended irreversible thermodynamic sense. The meaning of temperature is examined by means of a kinetic theory of macroscopic irreversible processes to assess the validity of the generalized (or extended) thermodynamic method applied to nonequilibrium phenomena. The Boltzmann equation is used for the purpose. Since the relative Boltzmann entropy has been known to be intimately related to the evolution of the aforementioned fluctuations in the intensive thermodynamic variables, we derive the evolution equations for such fluctuations of intensive variables to lay the foundation for investigating the physical implications and evolution of the relative Boltzmann entropy, so that the range of validity of the thermodynamic theory of irreversible processes can be elucidated. Within the framework of this work, we examine a special case of the evolution equations for the aforementioned fluctuations of intensive variables, which also facilitate investigation of the molecular theory meaning of the zeroth law of thermodynamics. We derive an evolution equation describing the relaxation of temperature fluctuations from its local value and present a formula for the temperature relaxation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.