Abstract

Platelet-derived growth factor (PDGF) exists as a homodimer or a heterodimer comprising either PDGF-A or PDGF-B subunits, and each isoform occurs in various tissues, including bone. Although the stimulatory effects of PDGF-BB have been studied in cultures of bone cells and intact bone fragments, the influence of other isoforms that may arise locally or systematically in vivo, has not been reported. Therefore recombinant human PDGF-BB, PDGF-AB, and PDGF-AA were evaluated in osteoblast-enriched cultures from fetal rat bone. Within 24 hours these factors produced a graded response in bone cell DNA and protein synthesis, with half-maximal effects at approximately 0.6, 2.1, and 4.8 nM PDGF-BB, PDGF-AB, and PDGF-AA, respectively. Increases in collagen and noncollagen protein synthesis were abrogated when DNA synthesis was blocked with hydroxyurea. Furthermore, each factor reduced alkaline phosphatase activity, PDGF-BB being the most inhibitory. Binding studies with 125I-PDGF-BB or 125I-PDGF-AA and each unlabeled PDGF isoform produced discrete ligand binding and displacement patterns: 125I-PDGF-BB binding was preferentially displaced by PDGF-BB (Ki approximately 0.7 nM), less by PDGF-AB (Ki approximately 2.3 nM) and poorly by PDGF-AA. In contrast, 125I-PDGF-AA binding was measurably reduced by PDGF-AA (Ki approximately 4.0 nM), but was more effectively displaced by PDGF-BB or PDGF-AB (each with Ki approximately 0.7 nM). These studies indicate that each PDGF isoform produces biochemical effects proportional to binding site occupancy and suggest that receptors that favor PDGF-B subunit binding preferentially mediate these results in osteoblast-enriched bone cell cultures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.