Abstract
The binding affinity and selectivity of a new ionophore, [1(8)]starand (1), toward alkali metal cations in methanol were examined through NMR titration experiments and free energy perturbation (FEP) and molecular dynamics simulations. The preference was determined to be K(+) > Rb(+) > Cs(+) > Na(+) >> Li(+) in both FEP simulations and NMR experiments. The FEP simulation results were able to predict the relative binding free energies with errors less than 0.13 kcal/mol, except for the case between Li(+) and Na(+). The cation selectivity was rationalized by analyzing the radial distribution functions of the M-O and M-C distances of free metal cations in methanol and those of metal-ionophore complexes in methanol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.