Abstract

In this paper, in order to consider the problems of relative width on ℝd, we proposed definitions of relative average width which combine the ideas of the relative width and the average width. We established the smallest number M which make the following equality $$ \overline K _\sigma (U(W_2^\alpha ),M(W_2^\alpha ),L_2 ({\mathbb{R}}^d )) = \overline d _\sigma (U(W_2^\alpha ),L_2 ({\mathbb{R}}^d )) $$ hold, where U(W2α) is the Riesz potential or Bessel potential of the unit ball in L2(ℝk) and the notations \( \overline K _\sigma \)(·, ·,L2(ℝd)) and \( \overline d _\sigma \)(·, L2(ℝd)) denote respectively the relative average width in the sense of Kolmogorov and the average width in the sense of Kolmogorov in their given order. In 2001, Subbotin and Telyakovskii got similar results on the relative width of Kolmogorov type. We also proved that $$ \overline K _\sigma (U(W_2^\alpha ) \cap B(L_2 (\mathbb{R}^d )),U(W_2^\beta ) \cap B(L_2 (\mathbb{R}^d ))L_2 (\mathbb{R}^d )) = \overline d _\sigma (U(W_2^\alpha ),L_2 (\mathbb{R}^d )), $$ where 0 × β × α.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call