Abstract
The main purpose of this paper is to analyze the time patterns of individual analysts’ relative accuracy ranking in earnings forecasts using a Markov chain model. Two levels of stochastic persistence are found in analysts’ relative accuracy over time. Factors underlying analysts’ performance persistence are identified and they include analyst’s length of experience, workload, and the size and growth rate of firms followed by the analyst. The strength and the composition of these factors are found to vary markedly in different industries. The findings support the general notion that analysts are heterogeneous in their accuracy in earnings forecasts and that their superior/inferior performance tends to persist over time. An analysis based on a refined measure of analysts’ forecast accuracy ranking that strips off firm-specific factors further enhances the empirical validity of the findings. These findings provide a concrete basis for researchers to further explore why and how analysts perform differently in the competitive market of investment information services.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.