Abstract

The markers of endothelial dysfunction, including soluble E-selectin (sE-selectin), are related to insulin resistance, which is associated with metabolic inflexibility, i.e., impaired stimulation of carbohydrate oxidation and impaired inhibition of lipid oxidation by insulin. Endothelial dysfunction may also be important in the metabolic syndrome. The aim of our study was to analyze the association of sE-selectin with insulin sensitivity and metabolic flexibility in lean and obese women. We examined 22 lean women (BMI < 25 kg m−2) and 26 overweight or obese women (BMI > 25 kg m−2) with normal glucose tolerance. A hyperinsulinemic euglycemic clamp and indirect calorimetry were performed. An increase in the respiratory exchange ratio in response to insulin was used as a measure of metabolic flexibility. Obese women had lower insulin sensitivity (P < 0.01), higher plasma sE-selectin (P = 0.007), and higher the metabolic syndrome total Z-score (MS Z-score) (P < 0.0001). Insulin sensitivity was negatively correlated with sE-selectin level (r = −0.24, P = 0.04). sE-selectin was associated with the rate of carbohydrate oxidation at the baseline state (r = 0.31, P = 0.007) and was negatively correlated with metabolic flexibility (r = −0.34, P = 0.003). MS Z-score correlated positively with sE-selectin level and negatively with metabolic flexibility and insulin sensitivity (r = 0.49, P < 0.0001, r = −0.29, P = 0.04, r = −0.51, P < 0.0001, respectively). In multiple regression analysis we observed that the relationship between metabolic flexibility and sE-selectin (β = −0.36; P = 0.004) was independent of the other evaluated factors. Our data suggest that endothelial dysfunction as assessed by plasma sE-selectin is associated with metabolic flexibility, inversely and independently of the other estimated factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.