Abstract

The contribution and precise role of intracortical circuits in generating orientation tuned responses in visual cortical neurons is still controversial. To address this question, the relationship between excitatory and inhibitory synaptic connections and orientation maps in ferret striate cortex was investigated by combining in vivo optical imaging and in vitro scanning laser photostimulation. Excitatory and inhibitory inputs to pyramidal cells originated preferentially from regions with similar orientation preference. Prominent cross-orientation inhibition was not observed, arguing against cross-orientation models of orientation selectivity. The tuning of inhibitory inputs was significantly broader in both layer 2/3 and layer 5/6 pyramidal neurons compared to the tuning of excitatory inputs. Local excitatory inputs were more prominent in the 0-20 degrees tuning difference range between pre- and postsynaptic cells than inhibitory inputs, whereas inhibition dominated in the 20-40 degrees tuning difference range. These differences in tuning of excitatory and inhibitory inputs onto individual cells are consistent with the predictions of recurrent models of orientation selectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call