Abstract

<p>Air pollution is repeatedly referred to as the largest environmental health risk in Europe. Exposure to heat can lead to a large variety of negative human health effects. Ground-level ozone (O<sub>3</sub>), one major air pollutant, often coincides with elevated air temperature levels. There is evidence that the resulting twofold exposure can lead to a human health risk beyond the sum of the individual effects of each health stressor (e.g., Hertig et al. 2020). But previous studies already point to the fact that the observed and modeled linkages between both variables as well as with underlying synoptic and meteorological drivers vary with the location of sites and from one region to another across Europe (e.g., Jahn, Hertig 2020; Jahn, Hertig 2022). Thus, impacts of concurrent elevated levels of O<sub>3</sub> and air temperate on human health need to be considered with a region-specific perspective. Besides, disease-specific exposure-outcome-relationships have to be taken into account, also with respect to mitigation and adaption strategies in the context of climate change.</p><p>The adverse human health effects of ground-level ozone and air temperature under recent and future climate conditions are analyzed and quantified by considering myocardial infarction (MI) as outcome variable. The urban area of Augsburg and two adjacent counties, located in a region with a strong and direct linkage between ozone and air temperature and a sharp projected increase of compound events, represent the regional focus. The association between both exposures and MI risk in Augsburg throughout the 21<sup>st</sup> century represents the particular focus of this study. The relationship between one health stressor alone and MI was already assessed in previous studies (e.g., Hertig 2020; Chen et al. 2019), but there is only limited evidence about the compound effect of both exposures on MI.</p><p><em>C</em><em>hen, K.; Breitner, S.; Wolf, K.; Hampel, R.; Meisinger, C.; et al. </em><em>(2019) </em><em>Temporal variations in the triggering of myocardial infarction by air temperature in Augsburg, Germany, 1987-2014. Eur Heart J.  doi:10.1093/eurheartj/ehz116</em></p><p><em>Hertig, E. (2020) Health-relevant ground-level ozone and temperature events under future climate change using the example of Bavaria, Southern Germany. Air Qual Atmos Health. doi: 10.1007/s11869-020-00811-z</em></p><p><em>Hertig, E.; Russo, A.; Trigo, R. (2020) Heat and ozone pollution waves in Central and South Europe- characteristics, weather types, and association with mortality. Atmosphere. doi: 10.3390/atmos11121271</em></p><p><em>Jahn, S.; Hertig, E. (2022) Using clustering, statistical modeling, and climate change projections to analyze recent and future region-specific compound ozone and temperature burden over Europe. GeoHealth. Submitted.</em></p><p><em>Jahn, S.; Hertig, E. (2020) Modeling and projecting health‐relevant combined ozone and temperature events in present and future Central European climate. Air Qual Atmos Health. doi: 10.1007/s11869‐020‐009610</em></p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.