Abstract
This chapter is devoted to the design of new tools for the study of decision trees. These tools are based on dynamic programming approach and need the consideration of subtables of the initial decision table. So this approach is applicable only to relatively small decision tables. The considered tools allow us to compute: 1 The minimum cost of an approximate decision tree for a given uncertainty value and a cost function. 2 The minimum number of nodes in an exact decision tree whose depth is at most a given value. For the first tool we considered various cost functions such as: depth and average depth of a decision tree and number of nodes (and number of terminal and nonterminal nodes) of a decision tree. The uncertainty of a decision table is equal to the number of unordered pairs of rows with different decisions. The uncertainty of approximate decision tree is equal to the maximum uncertainty of a subtable corresponding to a terminal node of the tree. In addition to the algorithms for such tools we also present experimental results applied to various datasets acquired from UCI ML Repository [4].
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.