Abstract

Globally, Campylobacter is a significant contributor to gastroenteritis. Efficient pathogens are qualified by their virulence power, resistance to antibiotics and epidemic spread. However, the correlation between antimicrobial resistance (AR) and the pathogenicity power of pathogens is complex and poorly understood. In this study, we aimed to investigate genes encoding virulence and AR mechanisms in 177 Campylobacter isolates collected from layer hens and eggs in Tunisia and to assess associations between AR and virulence characteristics. Virulotyping was determined by searching 13 virulence genes and AR-encoding genes were investigated by PCR and MAMA-PCR. The following genes were detected in C. jejuni and C. coli isolates: tet(O) (100%/100%), blaOXA-61 (18.82%/6.25%), and cmeB (100%/100%). All quinolone-resistant isolates harbored the Thr-86-Ile substitution in GyrA. Both the A2074C and A2075G mutations in 23S rRNA were found in all erythromycin-resistant isolates; however, the erm(B) gene was detected in 48.38% and 64.15% of the C. jejuni and C. coli isolates, respectively. The machine learning algorithm Random Forest was used to determine the association of virulence genes with AR phenotypes. This analysis showed that C. jejuni virulotypes with gene clusters encompassing the racR, ceuE, virB11, and pldA genes were strongly associated with the majority of phenotypic resistance. Our findings showed high rates of AR and virulence genes among poultry Campylobacter, which is a cause of concern to human health. In addition, the correlations of specific virulence genes with AR phenotypes were established by statistical analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call