Abstract

The ethanol utilization pathway in Aspergillus nidulans is a model system, which has been thoroughly elucidated at the biochemical, genetic and molecular levels. Three main elements are involved: (a) high level expression of the positively autoregulated activator AlcR; (b) the strong promoters of the structural genes for alcohol dehydrogenase (alcA) and aldehyde dehydrogenase (aldA); and (c) powerful activation of AlcR by the physiological inducer, acetaldehyde, produced from growth substrates such as ethanol and l-threonine. We have previously characterized the chemical features of direct inducers of the alc regulon. These studies allowed us to predict which type of carbonyl compounds might induce the system. In this study we have determined that catabolism of different amino acids, such as L-valine, L-isoleucine, L-arginine and L-proline, produces aldehydes that are either not accumulated or fail to induce the alc system. On the other hand, catabolism of D-galacturonic acid and putrescine, during which aldehydes are transiently accumulated, gives rise to induction of the alc genes. We show that the formation of a direct inducer from carboxylic esters does not depend on alcA-encoded alcohol dehydrogenase I or on AlcR, and suggest that a cytochrome P450 might be responsible for the initial formation of a physiological aldehyde inducer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call