Abstract

Surface-detected electromyographic (S-EMG) signals are used in exercise science to assess the extent of muscle activation, muscle fatigue, and neural activity during muscle contraction. However, the relationship has not been studied between S-EMG signal amplitude and motor unit activation at different muscle force levels. S-EMG signals were measured from 76 healthy subjects during target force levels of 5, 10, 20, 30, and 50% of maximal voluntary contraction (MVC) of the knee extensors over 20-30 s. Mean absolute S-EMG amplitude, surface-detected motor unit action potential amplitude (S-MUAP), motor unit mean firing rate (mFR), and motor unit mean voltage, which is the product of S-MUAP amplitude and mFR, were assessed in the vastus medialis by using EMG signal-decomposition and spike-triggered averaging techniques. Motor unit mean voltage increased to the same degree as mean absolute S-EMG amplitude with increasing force, implying that motor unit size and firing rate explain the increase in mean absolute S-EMG amplitude with increasing force generation. In addition, mean absolute S-EMG amplitude increased linearly during the course of each 20-30 s contraction, with the slope being greater at higher force levels. A small change was observed in the shape of needle-detected motor unit action potentials during the contraction, but this change was not sufficient to explain the large change in mean absolute S-EMG amplitude during the contraction. Mean absolute S-EMG amplitude at different force levels and its changes during the course of a submaximal contraction are dependent on the number of motor units active, their size, and firing rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call