Abstract

To evaluate the absorption of drugs with diverse structures across a membrane via the transcellular route, their permeability was measured using the parallel artificial membrane permeation assay (PAMPA). The permeability coefficients obtained by PAMPA were analyzed using a classical quantitative structure–activity relationship (QSAR) approach with simple physicochemical parameters and 3D-QSAR, VolSurf. We formulated correlation equations for diverse drugs similar to the equation obtained for peptide-related compounds in our previous study. The hydrogen-bonding ability of molecules, not only the hydrogen-accepting ability but also the hydrogen-donating ability, in addition to hydrophobicity at a particular pH, was significant in determining variations in PAMPA permeability coefficients. Based on this result, an in silico good prediction model for the passive transcellular permeability of diverse structural compounds was obtained. The artificial lipid-membrane permeability coefficients of the drugs, except salicylic acid, were well correlated with the Caco-2 permeability in a previous report suggesting the importance of absorption by the transcellular mechanism for these drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.