Abstract

The aim of this study was to evaluate the response pattern of diazotrophic microbes, denitrifiers and nitrifiers to different types of land use management, such as soybean monoculture (M) during 5 and 24 years (M5 and M24) and soybean-maize rotation (R) during 4 and 15 years (R4 and R15) in two subsequent years at the time point of flowering. Soil samples from a site recently introduced into agriculture (RUA) and a pristine soil under native vegetation (NV) were used as controls. Abundances of different functional groups of microbes were assessed using the direct quantification of marker genes by quantitative real-time PCR using extracted DNA from rhizosphere samples. In addition, soil chemical and physical properties were analysed and correlated with the abundance data from the functional microbial groups under investigation. Overall, the results indicate that the abundance of nifH genes was higher under R treatments compared to M treatments. The abundance of ammonium monooxygenase genes amoA (AOA) was generally higher under rotation systems and decreased under M24. RUA evidenced a negative effect on the establishment and development of AOA communities. The influence of land use on nirS abundance was inconsistent. However, R treatments showed a high abundance of nirK genes compared to M treatments. In both growing seasons, the abundance of nosZ genes was higher under NV compared with the other treatments. Furthermore, M24 treatment was related to strongly changed chemical and physical soil properties compared with the other sites. As expected, soil samples from RUA showed the strong dynamics of measured parameters indicating the high sensitivity of soils under transition to environmental parameters. Our results also indicated that the long-term crop rotation modified the abundance of the investigated microbial groups compared to the monoculture and increased soil chemical and physical quality. Therefore, our results provide evidence for a stimulatory effect of the long-term crop rotation on the abundance of microbes involved in N transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call