Abstract

Relationships between respiration rate and adenylate and carbohydrate pools of the soybean (Glycine max L. Merrill) fruit during rapid seed growth were evaluated. Plants at mid pod-fill were subjected to different concentrations of CO(2) to alter the amount of photosynthate produced and, thus, available to the fruit. Respiration rate of the intact fruits was measured, along with glucose, sucrose, and starch concentrations, adenylate energy charge (AEC), and total adenylate pool (SigmaAdN) in the pod wall, seed coat, and cotyledons. The concentration of sucrose remained relatively constant in the pod wall (1.0 milligram per 100 milligrams dry weight), seed coat (6.5 milligrams per 100 milligrams dry weight), and cotyledons (4.5 milligrams per 100 milligrams dry weight) at moderate and high respiration rates. Furthermore, AEC remained relatively constant in the pod wall (0.55), seed coat (0.24), and cotyledons (0.44) during changes in respiration rate. This suggests that the amount of assimilate transported to the fruit, and its flux through the sucrose pools of the fruit parts, were important in the regulation of the respiration rate of the fruit. The average SigmaAdN in the seed coat (1300 picomoles per milligram dry weight) was significantly greater than in the cotyledons (750 picomoles per milligram dry weight) and pod wall (300 picomoles per milligram dry weight). In addition, the SigmaAdN in the seed coat and cotyledons increased with increasing respiration rate of the fruit. The high SigmaAdN in the seed coat and its increase with increases in respiration rate of the fruit suggest that an energy-requiring process is involved in the movement of sucrose through the seed coat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call