Abstract

We compile two data sets from 14C uptake and dilution experiments conducted in surface waters of the global ocean to investigate the relationship between phytoplankton mass‐specific growth rate and cell size. After temperature correction, both data sets suggest that this relationship might be described by a unimodal quadratic curve with the modal size (the size corresponding to the maximal growth rate) being 2.8 and 5.4 µm in the 14C and dilution data sets, respectively. Nutrient enrichment does not change the qualitative nature of the relationships, and we conclude that inherently low maximal growth rates of picophytoplankton, not ambient nutrient effects, play the major role in determining the positive relationships over the size range where phytoplankton size is below the modal size. Temperature‐corrected phytoplankton grazing mortality rate is positively correlated with phytoplankton average size, but the proportion of daily primary production consumed by microzooplankton is negatively correlated with cell size, suggesting a reduced grazing effect as size increases. The unimodal relationship between phytoplankton growth rate and cell size is consistent with theoretical considerations and might reflect an adaptive response of phytoplankton to varying extents of nutrient limitation and grazing effect in marine systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.