Abstract

The rapid growth of the numbers of images and their users as a result of the reduction in cost and increase in efficiency of the creation, storage, manipulation, and transmission of images poses challenges to those who organize and provide access to images. One of these challenges is similarity matching, a key component of current content-based image retrieval systems. Similarity matching often is implemented through similarity measures based on geometric models of similarity whose metric axioms are not satisfied by human similarity judgment data. This study is significant in that it is among the first known to test Tversky's contrast model, which equates the degree of similarity of two stimuli to a linear combination of their common and distinctive features, in the context of image representation and retrieval. Data were collected from 150 participants who performed an image description and a similarity judgment task. Structural equation modeling, correlation, and regression analyses confirmed the relationships between perceived features and similarity of objects hypothesized by Tversky. The results hold implications for future research that will attempt to further test the contrast model and assist designers of image organization and retrieval systems by pointing toward alternative document representations and similarity measures that more closely match human similarity judgments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.